
1
INTRODUCTION TO

DATABASE SYSTEMS

Has everyone noticed that all the letters of the word database are typed with the left

hand? Now the layout of the QWERTY typewriter keyboard was designed, among

other things, to facilitate the even use of both hands. It follows, therefore, that

writing about databases is not only unnatural, but a lot harder than it appears.

—Anonymous

Today, more than at any previous time, the success of an organization depends on

its ability to acquire accurate and timely data about its operations, to manage this

data effectively, and to use it to analyze and guide its activities. Phrases such as the

information superhighway have become ubiquitous, and information processing is a

rapidly growing multibillion dollar industry.

The amount of information available to us is literally exploding, and the value of data

as an organizational asset is widely recognized. Yet without the ability to manage this

vast amount of data, and to quickly find the information that is relevant to a given

question, as the amount of information increases, it tends to become a distraction

and a liability, rather than an asset. This paradox drives the need for increasingly

powerful and flexible data management systems. To get the most out of their large

and complex datasets, users must have tools that simplify the tasks of managing the

data and extracting useful information in a timely fashion. Otherwise, data can become

a liability, with the cost of acquiring it and managing it far exceeding the value that

is derived from it.

A database is a collection of data, typically describing the activities of one or more

related organizations. For example, a university database might contain information

about the following:

Entities such as students, faculty, courses, and classrooms.

Relationships between entities, such as students’ enrollment in courses, faculty

teaching courses, and the use of rooms for courses.

A database management system, or DBMS, is software designed to assist in

maintaining and utilizing large collections of data, and the need for such systems, as

well as their use, is growing rapidly. The alternative to using a DBMS is to use ad

3



4 Chapter 1

hoc approaches that do not carry over from one application to another; for example,

to store the data in files and write application-specific code to manage it. The use of

a DBMS has several important advantages, as we will see in Section 1.4.

The area of database management systems is a microcosm of computer science in gen-

eral. The issues addressed and the techniques used span a wide spectrum, including

languages, object-orientation and other programming paradigms, compilation, oper-

ating systems, concurrent programming, data structures, algorithms, theory, parallel

and distributed systems, user interfaces, expert systems and artificial intelligence, sta-

tistical techniques, and dynamic programming. We will not be able to go into all these

aspects of database management in this book, but it should be clear that this is a rich

and vibrant discipline.

1.1 OVERVIEW

The goal of this book is to present an in-depth introduction to database management

systems, with an emphasis on how to organize information in a DBMS and to main-

tain it and retrieve it efficiently, that is, how to design a database and use a DBMS

effectively. Not surprisingly, many decisions about how to use a DBMS for a given

application depend on what capabilities the DBMS supports efficiently. Thus, to use a

DBMS well, it is necessary to also understand how a DBMS works. The approach taken

in this book is to emphasize how to use a DBMS, while covering DBMS implementation

and architecture in sufficient detail to understand how to design a database.

Many kinds of database management systems are in use, but this book concentrates on

relational systems, which are by far the dominant type of DBMS today. The following

questions are addressed in the core chapters of this book:

1. Database Design: How can a user describe a real-world enterprise (e.g., a uni-

versity) in terms of the data stored in a DBMS? What factors must be considered

in deciding how to organize the stored data? (Chapters 2, 3, 15, 16, and 17.)

2. Data Analysis: How can a user answer questions about the enterprise by posing

queries over the data in the DBMS? (Chapters 4, 5, 6, and 23.)

3. Concurrency and Robustness: How does a DBMS allow many users to access

data concurrently, and how does it protect the data in the event of system failures?

(Chapters 18, 19, and 20.)

4. Efficiency and Scalability: How does a DBMS store large datasets and answer

questions against this data efficiently? (Chapters 7, 8, 9, 10, 11, 12, 13, and 14.)

Later chapters cover important and rapidly evolving topics such as parallel and dis-

tributed database management, Internet databases, data warehousing and complex



Introduction to Database Systems 5

queries for decision support, data mining, object databases, spatial data management,

and rule-oriented DBMS extensions.

In the rest of this chapter, we introduce the issues listed above. In Section 1.2, we begin

with a brief history of the field and a discussion of the role of database management

in modern information systems. We then identify benefits of storing data in a DBMS

instead of a file system in Section 1.3, and discuss the advantages of using a DBMS

to manage data in Section 1.4. In Section 1.5 we consider how information about an

enterprise should be organized and stored in a DBMS. A user probably thinks about

this information in high-level terms corresponding to the entities in the organization

and their relationships, whereas the DBMS ultimately stores data in the form of (many,

many) bits. The gap between how users think of their data and how the data is

ultimately stored is bridged through several levels of abstraction supported by the

DBMS. Intuitively, a user can begin by describing the data in fairly high-level terms,

and then refine this description by considering additional storage and representation

details as needed.

In Section 1.6 we consider how users can retrieve data stored in a DBMS and the

need for techniques to efficiently compute answers to questions involving such data.

In Section 1.7 we provide an overview of how a DBMS supports concurrent access to

data by several users, and how it protects the data in the event of system failures.

We then briefly describe the internal structure of a DBMS in Section 1.8, and mention

various groups of people associated with the development and use of a DBMS in Section

1.9.

1.2 A HISTORICAL PERSPECTIVE

From the earliest days of computers, storing and manipulating data have been a major

application focus. The first general-purpose DBMS was designed by Charles Bachman

at General Electric in the early 1960s and was called the Integrated Data Store. It

formed the basis for the network data model, which was standardized by the Conference

on Data Systems Languages (CODASYL) and strongly influenced database systems

through the 1960s. Bachman was the first recipient of ACM’s Turing Award (the

computer science equivalent of a Nobel prize) for work in the database area; he received

the award in 1973.

In the late 1960s, IBM developed the Information Management System (IMS) DBMS,

used even today in many major installations. IMS formed the basis for an alternative

data representation framework called the hierarchical data model. The SABRE system

for making airline reservations was jointly developed by American Airlines and IBM

around the same time, and it allowed several people to access the same data through



6 Chapter 1

a computer network. Interestingly, today the same SABRE system is used to power

popular Web-based travel services such as Travelocity!

In 1970, Edgar Codd, at IBM’s San Jose Research Laboratory, proposed a new data

representation framework called the relational data model. This proved to be a water-

shed in the development of database systems: it sparked rapid development of several

DBMSs based on the relational model, along with a rich body of theoretical results

that placed the field on a firm foundation. Codd won the 1981 Turing Award for his

seminal work. Database systems matured as an academic discipline, and the popu-

larity of relational DBMSs changed the commercial landscape. Their benefits were

widely recognized, and the use of DBMSs for managing corporate data became stan-

dard practice.

In the 1980s, the relational model consolidated its position as the dominant DBMS

paradigm, and database systems continued to gain widespread use. The SQL query

language for relational databases, developed as part of IBM’s System R project, is now

the standard query language. SQL was standardized in the late 1980s, and the current

standard, SQL-92, was adopted by the American National Standards Institute (ANSI)

and International Standards Organization (ISO). Arguably, the most widely used form

of concurrent programming is the concurrent execution of database programs (called

transactions). Users write programs as if they are to be run by themselves, and the

responsibility for running them concurrently is given to the DBMS. James Gray won

the 1999 Turing award for his contributions to the field of transaction management in

a DBMS.

In the late 1980s and the 1990s, advances have been made in many areas of database

systems. Considerable research has been carried out into more powerful query lan-

guages and richer data models, and there has been a big emphasis on supporting

complex analysis of data from all parts of an enterprise. Several vendors (e.g., IBM’s

DB2, Oracle 8, Informix UDS) have extended their systems with the ability to store

new data types such as images and text, and with the ability to ask more complex

queries. Specialized systems have been developed by numerous vendors for creating

data warehouses, consolidating data from several databases, and for carrying out spe-

cialized analysis.

An interesting phenomenon is the emergence of several enterprise resource planning

(ERP) and management resource planning (MRP) packages, which add a substantial

layer of application-oriented features on top of a DBMS. Widely used packages include

systems from Baan, Oracle, PeopleSoft, SAP, and Siebel. These packages identify a

set of common tasks (e.g., inventory management, human resources planning, finan-

cial analysis) encountered by a large number of organizations and provide a general

application layer to carry out these tasks. The data is stored in a relational DBMS,

and the application layer can be customized to different companies, leading to lower



Introduction to Database Systems 7

overall costs for the companies, compared to the cost of building the application layer

from scratch.

Most significantly, perhaps, DBMSs have entered the Internet Age. While the first

generation of Web sites stored their data exclusively in operating systems files, the

use of a DBMS to store data that is accessed through a Web browser is becoming

widespread. Queries are generated through Web-accessible forms and answers are

formatted using a markup language such as HTML, in order to be easily displayed

in a browser. All the database vendors are adding features to their DBMS aimed at

making it more suitable for deployment over the Internet.

Database management continues to gain importance as more and more data is brought

on-line, and made ever more accessible through computer networking. Today the field is

being driven by exciting visions such as multimedia databases, interactive video, digital

libraries, a host of scientific projects such as the human genome mapping effort and

NASA’s Earth Observation System project, and the desire of companies to consolidate

their decision-making processes and mine their data repositories for useful information

about their businesses. Commercially, database management systems represent one of

the largest and most vigorous market segments. Thus the study of database systems

could prove to be richly rewarding in more ways than one!

1.3 FILE SYSTEMS VERSUS A DBMS

To understand the need for a DBMS, let us consider a motivating scenario: A company

has a large collection (say, 500 GB1) of data on employees, departments, products,

sales, and so on. This data is accessed concurrently by several employees. Questions

about the data must be answered quickly, changes made to the data by different users

must be applied consistently, and access to certain parts of the data (e.g., salaries)

must be restricted.

We can try to deal with this data management problem by storing the data in a

collection of operating system files. This approach has many drawbacks, including the

following:

We probably do not have 500 GB of main memory to hold all the data. We must

therefore store data in a storage device such as a disk or tape and bring relevant

parts into main memory for processing as needed.

Even if we have 500 GB of main memory, on computer systems with 32-bit ad-

dressing, we cannot refer directly to more than about 4 GB of data! We have to

program some method of identifying all data items.

1A kilobyte (KB) is 1024 bytes, a megabyte (MB) is 1024 KBs, a gigabyte (GB) is 1024 MBs, a
terabyte (TB) is 1024 GBs, and a petabyte (PB) is 1024 terabytes.



8 Chapter 1

We have to write special programs to answer each question that users may want

to ask about the data. These programs are likely to be complex because of the

large volume of data to be searched.

We must protect the data from inconsistent changes made by different users ac-

cessing the data concurrently. If programs that access the data are written with

such concurrent access in mind, this adds greatly to their complexity.

We must ensure that data is restored to a consistent state if the system crashes

while changes are being made.

Operating systems provide only a password mechanism for security. This is not

sufficiently flexible to enforce security policies in which different users have per-

mission to access different subsets of the data.

A DBMS is a piece of software that is designed to make the preceding tasks easier.

By storing data in a DBMS, rather than as a collection of operating system files, we

can use the DBMS’s features to manage the data in a robust and efficient manner.

As the volume of data and the number of users grow—hundreds of gigabytes of data

and thousands of users are common in current corporate databases—DBMS support

becomes indispensable.

1.4 ADVANTAGES OF A DBMS

Using a DBMS to manage data has many advantages:

Data independence: Application programs should be as independent as possi-

ble from details of data representation and storage. The DBMS can provide an

abstract view of the data to insulate application code from such details.

Efficient data access: A DBMS utilizes a variety of sophisticated techniques to

store and retrieve data efficiently. This feature is especially important if the data

is stored on external storage devices.

Data integrity and security: If data is always accessed through the DBMS, the

DBMS can enforce integrity constraints on the data. For example, before inserting

salary information for an employee, the DBMS can check that the department

budget is not exceeded. Also, the DBMS can enforce access controls that govern

what data is visible to different classes of users.

Data administration: When several users share the data, centralizing the ad-

ministration of data can offer significant improvements. Experienced professionals

who understand the nature of the data being managed, and how different groups

of users use it, can be responsible for organizing the data representation to min-

imize redundancy and for fine-tuning the storage of the data to make retrieval

efficient.



Introduction to Database Systems 9

Concurrent access and crash recovery: A DBMS schedules concurrent ac-

cesses to the data in such a manner that users can think of the data as being

accessed by only one user at a time. Further, the DBMS protects users from the

effects of system failures.

Reduced application development time: Clearly, the DBMS supports many

important functions that are common to many applications accessing data stored

in the DBMS. This, in conjunction with the high-level interface to the data, facil-

itates quick development of applications. Such applications are also likely to be

more robust than applications developed from scratch because many important

tasks are handled by the DBMS instead of being implemented by the application.

Given all these advantages, is there ever a reason not to use a DBMS? A DBMS is

a complex piece of software, optimized for certain kinds of workloads (e.g., answering

complex queries or handling many concurrent requests), and its performance may not

be adequate for certain specialized applications. Examples include applications with

tight real-time constraints or applications with just a few well-defined critical opera-

tions for which efficient custom code must be written. Another reason for not using a

DBMS is that an application may need to manipulate the data in ways not supported

by the query language. In such a situation, the abstract view of the data presented by

the DBMS does not match the application’s needs, and actually gets in the way. As an

example, relational databases do not support flexible analysis of text data (although

vendors are now extending their products in this direction). If specialized performance

or data manipulation requirements are central to an application, the application may

choose not to use a DBMS, especially if the added benefits of a DBMS (e.g., flexible

querying, security, concurrent access, and crash recovery) are not required. In most

situations calling for large-scale data management, however, DBMSs have become an

indispensable tool.

1.5 DESCRIBING AND STORING DATA IN A DBMS

The user of a DBMS is ultimately concerned with some real-world enterprise, and the

data to be stored describes various aspects of this enterprise. For example, there are

students, faculty, and courses in a university, and the data in a university database

describes these entities and their relationships.

A data model is a collection of high-level data description constructs that hide many

low-level storage details. A DBMS allows a user to define the data to be stored in

terms of a data model. Most database management systems today are based on the

relational data model, which we will focus on in this book.

While the data model of the DBMS hides many details, it is nonetheless closer to how

the DBMS stores data than to how a user thinks about the underlying enterprise. A

semantic data model is a more abstract, high-level data model that makes it easier



10 Chapter 1

for a user to come up with a good initial description of the data in an enterprise.

These models contain a wide variety of constructs that help describe a real application

scenario. A DBMS is not intended to support all these constructs directly; it is typically

built around a data model with just a few basic constructs, such as the relational model.

A database design in terms of a semantic model serves as a useful starting point and is

subsequently translated into a database design in terms of the data model the DBMS

actually supports.

A widely used semantic data model called the entity-relationship (ER) model allows

us to pictorially denote entities and the relationships among them. We cover the ER

model in Chapter 2.

1.5.1 The Relational Model

In this section we provide a brief introduction to the relational model. The central

data description construct in this model is a relation, which can be thought of as a

set of records.

A description of data in terms of a data model is called a schema. In the relational

model, the schema for a relation specifies its name, the name of each field (or attribute

or column), and the type of each field. As an example, student information in a

university database may be stored in a relation with the following schema:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

The preceding schema says that each record in the Students relation has five fields,

with field names and types as indicated.2 An example instance of the Students relation

appears in Figure 1.1.

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

53650 Smith smith@math 19 3.8

53831 Madayan madayan@music 11 1.8

53832 Guldu guldu@music 12 2.0

Figure 1.1 An Instance of the Students Relation

2Storing date of birth is preferable to storing age, since it does not change over time, unlike age.
We’ve used age for simplicity in our discussion.



Introduction to Database Systems 11

Each row in the Students relation is a record that describes a student. The description

is not complete—for example, the student’s height is not included—but is presumably

adequate for the intended applications in the university database. Every row follows

the schema of the Students relation. The schema can therefore be regarded as a

template for describing a student.

We can make the description of a collection of students more precise by specifying

integrity constraints, which are conditions that the records in a relation must satisfy.

For example, we could specify that every student has a unique sid value. Observe that

we cannot capture this information by simply adding another field to the Students

schema. Thus, the ability to specify uniqueness of the values in a field increases the

accuracy with which we can describe our data. The expressiveness of the constructs

available for specifying integrity constraints is an important aspect of a data model.

Other Data Models

In addition to the relational data model (which is used in numerous systems, including

IBM’s DB2, Informix, Oracle, Sybase, Microsoft’s Access, FoxBase, Paradox, Tandem,

and Teradata), other important data models include the hierarchical model (e.g., used

in IBM’s IMS DBMS), the network model (e.g., used in IDS and IDMS), the object-

oriented model (e.g., used in Objectstore and Versant), and the object-relational model

(e.g., used in DBMS products from IBM, Informix, ObjectStore, Oracle, Versant, and

others). While there are many databases that use the hierarchical and network models,

and systems based on the object-oriented and object-relational models are gaining

acceptance in the marketplace, the dominant model today is the relational model.

In this book, we will focus on the relational model because of its wide use and impor-

tance. Indeed, the object-relational model, which is gaining in popularity, is an effort

to combine the best features of the relational and object-oriented models, and a good

grasp of the relational model is necessary to understand object-relational concepts.

(We discuss the object-oriented and object-relational models in Chapter 25.)

1.5.2 Levels of Abstraction in a DBMS

The data in a DBMS is described at three levels of abstraction, as illustrated in Figure

1.2. The database description consists of a schema at each of these three levels of

abstraction: the conceptual, physical, and external schemas.

A data definition language (DDL) is used to define the external and conceptual

schemas. We will discuss the DDL facilities of the most widely used database language,

SQL, in Chapter 3. All DBMS vendors also support SQL commands to describe aspects

of the physical schema, but these commands are not part of the SQL-92 language



12 Chapter 1

DISK

External Schema 1 External Schema 2 External Schema 3

Conceptual Schema

Physical Schema

Figure 1.2 Levels of Abstraction in a DBMS

standard. Information about the conceptual, external, and physical schemas is stored

in the system catalogs (Section 13.2). We discuss the three levels of abstraction in

the rest of this section.

Conceptual Schema

The conceptual schema (sometimes called the logical schema) describes the stored

data in terms of the data model of the DBMS. In a relational DBMS, the conceptual

schema describes all relations that are stored in the database. In our sample university

database, these relations contain information about entities, such as students and

faculty, and about relationships, such as students’ enrollment in courses. All student

entities can be described using records in a Students relation, as we saw earlier. In

fact, each collection of entities and each collection of relationships can be described as

a relation, leading to the following conceptual schema:

Students(sid: string, name: string, login: string,

age: integer, gpa: real)

Faculty(fid: string, fname: string, sal: real)

Courses(cid: string, cname: string, credits: integer)

Rooms(rno: integer, address: string, capacity: integer)

Enrolled(sid: string, cid: string, grade: string)

Teaches(fid: string, cid: string)

Meets In(cid: string, rno: integer, time: string)

The choice of relations, and the choice of fields for each relation, is not always obvi-

ous, and the process of arriving at a good conceptual schema is called conceptual

database design. We discuss conceptual database design in Chapters 2 and 15.



Introduction to Database Systems 13

Physical Schema

The physical schema specifies additional storage details. Essentially, the physical

schema summarizes how the relations described in the conceptual schema are actually

stored on secondary storage devices such as disks and tapes.

We must decide what file organizations to use to store the relations, and create auxiliary

data structures called indexes to speed up data retrieval operations. A sample physical

schema for the university database follows:

Store all relations as unsorted files of records. (A file in a DBMS is either a

collection of records or a collection of pages, rather than a string of characters as

in an operating system.)

Create indexes on the first column of the Students, Faculty, and Courses relations,

the sal column of Faculty, and the capacity column of Rooms.

Decisions about the physical schema are based on an understanding of how the data is

typically accessed. The process of arriving at a good physical schema is called physical

database design. We discuss physical database design in Chapter 16.

External Schema

External schemas, which usually are also in terms of the data model of the DBMS,

allow data access to be customized (and authorized) at the level of individual users

or groups of users. Any given database has exactly one conceptual schema and one

physical schema because it has just one set of stored relations, but it may have several

external schemas, each tailored to a particular group of users. Each external schema

consists of a collection of one or more views and relations from the conceptual schema.

A view is conceptually a relation, but the records in a view are not stored in the DBMS.

Rather, they are computed using a definition for the view, in terms of relations stored

in the DBMS. We discuss views in more detail in Chapter 3.

The external schema design is guided by end user requirements. For example, we might

want to allow students to find out the names of faculty members teaching courses, as

well as course enrollments. This can be done by defining the following view:

Courseinfo(cid: string, fname: string, enrollment: integer)

A user can treat a view just like a relation and ask questions about the records in the

view. Even though the records in the view are not stored explicitly, they are computed

as needed. We did not include Courseinfo in the conceptual schema because we can

compute Courseinfo from the relations in the conceptual schema, and to store it in

addition would be redundant. Such redundancy, in addition to the wasted space, could



14 Chapter 1

lead to inconsistencies. For example, a tuple may be inserted into the Enrolled relation,

indicating that a particular student has enrolled in some course, without incrementing

the value in the enrollment field of the corresponding record of Courseinfo (if the latter

also is part of the conceptual schema and its tuples are stored in the DBMS).

1.5.3 Data Independence

A very important advantage of using a DBMS is that it offers data independence.

That is, application programs are insulated from changes in the way the data is struc-

tured and stored. Data independence is achieved through use of the three levels of

data abstraction; in particular, the conceptual schema and the external schema pro-

vide distinct benefits in this area.

Relations in the external schema (view relations) are in principle generated on demand

from the relations corresponding to the conceptual schema.3 If the underlying data is

reorganized, that is, the conceptual schema is changed, the definition of a view relation

can be modified so that the same relation is computed as before. For example, suppose

that the Faculty relation in our university database is replaced by the following two

relations:

Faculty public(fid: string, fname: string, office: integer)

Faculty private(fid: string, sal: real)

Intuitively, some confidential information about faculty has been placed in a separate

relation and information about offices has been added. The Courseinfo view relation

can be redefined in terms of Faculty public and Faculty private, which together contain

all the information in Faculty, so that a user who queries Courseinfo will get the same

answers as before.

Thus users can be shielded from changes in the logical structure of the data, or changes

in the choice of relations to be stored. This property is called logical data indepen-

dence.

In turn, the conceptual schema insulates users from changes in the physical storage

of the data. This property is referred to as physical data independence. The

conceptual schema hides details such as how the data is actually laid out on disk, the

file structure, and the choice of indexes. As long as the conceptual schema remains the

same, we can change these storage details without altering applications. (Of course,

performance might be affected by such changes.)

3In practice, they could be precomputed and stored to speed up queries on view relations, but the
computed view relations must be updated whenever the underlying relations are updated.



Introduction to Database Systems 15

1.6 QUERIES IN A DBMS

The ease with which information can be obtained from a database often determines

its value to a user. In contrast to older database systems, relational database systems

allow a rich class of questions to be posed easily; this feature has contributed greatly

to their popularity. Consider the sample university database in Section 1.5.2. Here are

examples of questions that a user might ask:

1. What is the name of the student with student id 123456?

2. What is the average salary of professors who teach the course with cid CS564?

3. How many students are enrolled in course CS564?

4. What fraction of students in course CS564 received a grade better than B?

5. Is any student with a GPA less than 3.0 enrolled in course CS564?

Such questions involving the data stored in a DBMS are called queries. A DBMS

provides a specialized language, called the query language, in which queries can be

posed. A very attractive feature of the relational model is that it supports powerful

query languages. Relational calculus is a formal query language based on mathemat-

ical logic, and queries in this language have an intuitive, precise meaning. Relational

algebra is another formal query language, based on a collection of operators for

manipulating relations, which is equivalent in power to the calculus.

A DBMS takes great care to evaluate queries as efficiently as possible. We discuss

query optimization and evaluation in Chapters 12 and 13. Of course, the efficiency of

query evaluation is determined to a large extent by how the data is stored physically.

Indexes can be used to speed up many queries—in fact, a good choice of indexes for the

underlying relations can speed up each query in the preceding list. We discuss data

storage and indexing in Chapters 7, 8, 9, and 10.

A DBMS enables users to create, modify, and query data through a data manipula-

tion language (DML). Thus, the query language is only one part of the DML, which

also provides constructs to insert, delete, and modify data. We will discuss the DML

features of SQL in Chapter 5. The DML and DDL are collectively referred to as the

data sublanguage when embedded within a host language (e.g., C or COBOL).

1.7 TRANSACTION MANAGEMENT

Consider a database that holds information about airline reservations. At any given

instant, it is possible (and likely) that several travel agents are looking up information

about available seats on various flights and making new seat reservations. When several

users access (and possibly modify) a database concurrently, the DBMS must order



16 Chapter 1

their requests carefully to avoid conflicts. For example, when one travel agent looks

up Flight 100 on some given day and finds an empty seat, another travel agent may

simultaneously be making a reservation for that seat, thereby making the information

seen by the first agent obsolete.

Another example of concurrent use is a bank’s database. While one user’s application

program is computing the total deposits, another application may transfer money

from an account that the first application has just ‘seen’ to an account that has not

yet been seen, thereby causing the total to appear larger than it should be. Clearly,

such anomalies should not be allowed to occur. However, disallowing concurrent access

can degrade performance.

Further, the DBMS must protect users from the effects of system failures by ensuring

that all data (and the status of active applications) is restored to a consistent state

when the system is restarted after a crash. For example, if a travel agent asks for a

reservation to be made, and the DBMS responds saying that the reservation has been

made, the reservation should not be lost if the system crashes. On the other hand, if

the DBMS has not yet responded to the request, but is in the process of making the

necessary changes to the data while the crash occurs, the partial changes should be

undone when the system comes back up.

A transaction is any one execution of a user program in a DBMS. (Executing the

same program several times will generate several transactions.) This is the basic unit

of change as seen by the DBMS: Partial transactions are not allowed, and the effect of

a group of transactions is equivalent to some serial execution of all transactions. We

briefly outline how these properties are guaranteed, deferring a detailed discussion to

later chapters.

1.7.1 Concurrent Execution of Transactions

An important task of a DBMS is to schedule concurrent accesses to data so that each

user can safely ignore the fact that others are accessing the data concurrently. The im-

portance of this task cannot be underestimated because a database is typically shared

by a large number of users, who submit their requests to the DBMS independently, and

simply cannot be expected to deal with arbitrary changes being made concurrently by

other users. A DBMS allows users to think of their programs as if they were executing

in isolation, one after the other in some order chosen by the DBMS. For example, if

a program that deposits cash into an account is submitted to the DBMS at the same

time as another program that debits money from the same account, either of these

programs could be run first by the DBMS, but their steps will not be interleaved in

such a way that they interfere with each other.



Introduction to Database Systems 17

A locking protocol is a set of rules to be followed by each transaction (and enforced

by the DBMS), in order to ensure that even though actions of several transactions

might be interleaved, the net effect is identical to executing all transactions in some

serial order. A lock is a mechanism used to control access to database objects. Two

kinds of locks are commonly supported by a DBMS: shared locks on an object can

be held by two different transactions at the same time, but an exclusive lock on an

object ensures that no other transactions hold any lock on this object.

Suppose that the following locking protocol is followed: Every transaction begins by

obtaining a shared lock on each data object that it needs to read and an exclusive

lock on each data object that it needs to modify, and then releases all its locks after

completing all actions. Consider two transactions T1 and T2 such that T1 wants to

modify a data object and T2 wants to read the same object. Intuitively, if T1’s request

for an exclusive lock on the object is granted first, T2 cannot proceed until T1 releases

this lock, because T2’s request for a shared lock will not be granted by the DBMS

until then. Thus, all of T1’s actions will be completed before any of T2’s actions are

initiated. We consider locking in more detail in Chapters 18 and 19.

1.7.2 Incomplete Transactions and System Crashes

Transactions can be interrupted before running to completion for a variety of reasons,

e.g., a system crash. A DBMS must ensure that the changes made by such incomplete

transactions are removed from the database. For example, if the DBMS is in the

middle of transferring money from account A to account B, and has debited the first

account but not yet credited the second when the crash occurs, the money debited

from account A must be restored when the system comes back up after the crash.

To do so, the DBMS maintains a log of all writes to the database. A crucial prop-

erty of the log is that each write action must be recorded in the log (on disk) before

the corresponding change is reflected in the database itself—otherwise, if the system

crashes just after making the change in the database but before the change is recorded

in the log, the DBMS would be unable to detect and undo this change. This property

is called Write-Ahead Log or WAL. To ensure this property, the DBMS must be

able to selectively force a page in memory to disk.

The log is also used to ensure that the changes made by a successfully completed

transaction are not lost due to a system crash, as explained in Chapter 20. Bringing

the database to a consistent state after a system crash can be a slow process, since

the DBMS must ensure that the effects of all transactions that completed prior to the

crash are restored, and that the effects of incomplete transactions are undone. The

time required to recover from a crash can be reduced by periodically forcing some

information to disk; this periodic operation is called a checkpoint.



18 Chapter 1

1.7.3 Points to Note

In summary, there are three points to remember with respect to DBMS support for

concurrency control and recovery:

1. Every object that is read or written by a transaction is first locked in shared or

exclusive mode, respectively. Placing a lock on an object restricts its availability

to other transactions and thereby affects performance.

2. For efficient log maintenance, the DBMS must be able to selectively force a collec-

tion of pages in main memory to disk. Operating system support for this operation

is not always satisfactory.

3. Periodic checkpointing can reduce the time needed to recover from a crash. Of

course, this must be balanced against the fact that checkpointing too often slows

down normal execution.

1.8 STRUCTURE OF A DBMS

Figure 1.3 shows the structure (with some simplification) of a typical DBMS based on

the relational data model.

Index Files

Data Files

System Catalog

Buffer Manager

Disk Space Manager

Files and Access Methods

Operator Evaluator Optimizer

ParserPlan Executor

DBMS

Engine
Evaluation
Query

SQL COMMANDS

Application Front EndsWeb Forms SQL Interface

Sophisticated users, application
programmers, DB administratorsUnsophisticated users (customers, travel agents, etc.)

shows interaction

DATABASE

shows command flow

shows references

Concurrency
Control

Transaction
Manager

Manager
Lock

Recovery

Manager

Figure 1.3 Architecture of a DBMS



Introduction to Database Systems 19

The DBMS accepts SQL commands generated from a variety of user interfaces, pro-

duces query evaluation plans, executes these plans against the database, and returns

the answers. (This is a simplification: SQL commands can be embedded in host-

language application programs, e.g., Java or COBOL programs. We ignore these issues

to concentrate on the core DBMS functionality.)

When a user issues a query, the parsed query is presented to a query optimizer, which

uses information about how the data is stored to produce an efficient execution plan

for evaluating the query. An execution plan is a blueprint for evaluating a query, and

is usually represented as a tree of relational operators (with annotations that contain

additional detailed information about which access methods to use, etc.). We discuss

query optimization in Chapter 13. Relational operators serve as the building blocks

for evaluating queries posed against the data. The implementation of these operators

is discussed in Chapter 12.

The code that implements relational operators sits on top of the file and access methods

layer. This layer includes a variety of software for supporting the concept of a file,

which, in a DBMS, is a collection of pages or a collection of records. This layer typically

supports a heap file, or file of unordered pages, as well as indexes. In addition to

keeping track of the pages in a file, this layer organizes the information within a page.

File and page level storage issues are considered in Chapter 7. File organizations and

indexes are considered in Chapter 8.

The files and access methods layer code sits on top of the buffer manager, which

brings pages in from disk to main memory as needed in response to read requests.

Buffer management is discussed in Chapter 7.

The lowest layer of the DBMS software deals with management of space on disk, where

the data is stored. Higher layers allocate, deallocate, read, and write pages through

(routines provided by) this layer, called the disk space manager. This layer is

discussed in Chapter 7.

The DBMS supports concurrency and crash recovery by carefully scheduling user re-

quests and maintaining a log of all changes to the database. DBMS components associ-

ated with concurrency control and recovery include the transaction manager, which

ensures that transactions request and release locks according to a suitable locking pro-

tocol and schedules the execution transactions; the lock manager, which keeps track

of requests for locks and grants locks on database objects when they become available;

and the recovery manager, which is responsible for maintaining a log, and restoring

the system to a consistent state after a crash. The disk space manager, buffer manager,

and file and access method layers must interact with these components. We discuss

concurrency control and recovery in detail in Chapter 18.



20 Chapter 1

1.9 PEOPLE WHO DEAL WITH DATABASES

Quite a variety of people are associated with the creation and use of databases. Obvi-

ously, there are database implementors, who build DBMS software, and end users

who wish to store and use data in a DBMS. Database implementors work for ven-

dors such as IBM or Oracle. End users come from a diverse and increasing number

of fields. As data grows in complexity and volume, and is increasingly recognized as

a major asset, the importance of maintaining it professionally in a DBMS is being

widely accepted. Many end users simply use applications written by database applica-

tion programmers (see below), and so require little technical knowledge about DBMS

software. Of course, sophisticated users who make more extensive use of a DBMS,

such as writing their own queries, require a deeper understanding of its features.

In addition to end users and implementors, two other classes of people are associated

with a DBMS: application programmers and database administrators (DBAs).

Database application programmers develop packages that facilitate data access

for end users, who are usually not computer professionals, using the host or data

languages and software tools that DBMS vendors provide. (Such tools include report

writers, spreadsheets, statistical packages, etc.) Application programs should ideally

access data through the external schema. It is possible to write applications that access

data at a lower level, but such applications would compromise data independence.

A personal database is typically maintained by the individual who owns it and uses it.

However, corporate or enterprise-wide databases are typically important enough and

complex enough that the task of designing and maintaining the database is entrusted

to a professional called the database administrator. The DBA is responsible for

many critical tasks:

Design of the conceptual and physical schemas: The DBA is responsible

for interacting with the users of the system to understand what data is to be

stored in the DBMS and how it is likely to be used. Based on this knowledge, the

DBA must design the conceptual schema (decide what relations to store) and the

physical schema (decide how to store them). The DBA may also design widely

used portions of the external schema, although users will probably augment this

schema by creating additional views.

Security and authorization: The DBA is responsible for ensuring that unau-

thorized data access is not permitted. In general, not everyone should be able

to access all the data. In a relational DBMS, users can be granted permission

to access only certain views and relations. For example, although you might al-

low students to find out course enrollments and who teaches a given course, you

would not want students to see faculty salaries or each others’ grade information.



Introduction to Database Systems 21

The DBA can enforce this policy by giving students permission to read only the

Courseinfo view.

Data availability and recovery from failures: The DBA must take steps

to ensure that if the system fails, users can continue to access as much of the

uncorrupted data as possible. The DBA must also work to restore the data to a

consistent state. The DBMS provides software support for these functions, but the

DBA is responsible for implementing procedures to back up the data periodically

and to maintain logs of system activity (to facilitate recovery from a crash).

Database tuning: The needs of users are likely to evolve with time. The DBA is

responsible for modifying the database, in particular the conceptual and physical

schemas, to ensure adequate performance as user requirements change.

1.10 POINTS TO REVIEW

A database management system (DBMS) is software that supports management

of large collections of data. A DBMS provides efficient data access, data in-

dependence, data integrity, security, quick application development, support for

concurrent access, and recovery from system failures. (Section 1.1)

Storing data in a DBMS versus storing it in operating system files has many

advantages. (Section 1.3)

Using a DBMS provides the user with data independence, efficient data access,

automatic data integrity, and security. (Section 1.4)

The structure of the data is described in terms of a data model and the description

is called a schema. The relational model is currently the most popular data model.

A DBMS distinguishes between external, conceptual, and physical schema and

thus allows a view of the data at three levels of abstraction. Physical and logical

data independence, which are made possible by these three levels of abstraction,

insulate the users of a DBMS from the way the data is structured and stored

inside a DBMS. (Section 1.5)

A query language and a data manipulation language enable high-level access and

modification of the data. (Section 1.6)

A transaction is a logical unit of access to a DBMS. The DBMS ensures that

either all or none of a transaction’s changes are applied to the database. For

performance reasons, the DBMS processes multiple transactions concurrently, but

ensures that the result is equivalent to running the transactions one after the other

in some order. The DBMS maintains a record of all changes to the data in the

system log, in order to undo partial transactions and recover from system crashes.

Checkpointing is a periodic operation that can reduce the time for recovery from

a crash. (Section 1.7)



22 Chapter 1

DBMS code is organized into several modules: the disk space manager, the buffer

manager, a layer that supports the abstractions of files and index structures, a

layer that implements relational operators, and a layer that optimizes queries and

produces an execution plan in terms of relational operators. (Section 1.8)

A database administrator (DBA) manages a DBMS for an enterprise. The DBA

designs schemas, provide security, restores the system after a failure, and period-

ically tunes the database to meet changing user needs. Application programmers

develop applications that use DBMS functionality to access and manipulate data,

and end users invoke these applications. (Section 1.9)

EXERCISES

Exercise 1.1 Why would you choose a database system instead of simply storing data in

operating system files? When would it make sense not to use a database system?

Exercise 1.2 What is logical data independence and why is it important?

Exercise 1.3 Explain the difference between logical and physical data independence.

Exercise 1.4 Explain the difference between external, internal, and conceptual schemas.

How are these different schema layers related to the concepts of logical and physical data

independence?

Exercise 1.5 What are the responsibilities of a DBA? If we assume that the DBA is never

interested in running his or her own queries, does the DBA still need to understand query

optimization? Why?

Exercise 1.6 Scrooge McNugget wants to store information (names, addresses, descriptions

of embarrassing moments, etc.) about the many ducks on his payroll. Not surprisingly, the

volume of data compels him to buy a database system. To save money, he wants to buy one

with the fewest possible features, and he plans to run it as a stand-alone application on his

PC clone. Of course, Scrooge does not plan to share his list with anyone. Indicate which of

the following DBMS features Scrooge should pay for; in each case also indicate why Scrooge

should (or should not) pay for that feature in the system he buys.

1. A security facility.

2. Concurrency control.

3. Crash recovery.

4. A view mechanism.

5. A query language.

Exercise 1.7 Which of the following plays an important role in representing information

about the real world in a database? Explain briefly.

1. The data definition language.



Introduction to Database Systems 23

2. The data manipulation language.

3. The buffer manager.

4. The data model.

Exercise 1.8 Describe the structure of a DBMS. If your operating system is upgraded to

support some new functions on OS files (e.g., the ability to force some sequence of bytes to

disk), which layer(s) of the DBMS would you have to rewrite in order to take advantage of

these new functions?

Exercise 1.9 Answer the following questions:

1. What is a transaction?

2. Why does a DBMS interleave the actions of different transactions, instead of executing

transactions one after the other?

3. What must a user guarantee with respect to a transaction and database consistency?

What should a DBMS guarantee with respect to concurrent execution of several trans-

actions and database consistency?

4. Explain the strict two-phase locking protocol.

5. What is the WAL property, and why is it important?

PROJECT-BASED EXERCISES

Exercise 1.10 Use a Web browser to look at the HTML documentation for Minibase. Try

to get a feel for the overall architecture.

BIBLIOGRAPHIC NOTES

The evolution of database management systems is traced in [248]. The use of data models

for describing real-world data is discussed in [361], and [363] contains a taxonomy of data

models. The three levels of abstraction were introduced in [155, 623]. The network data

model is described in [155], and [680] discusses several commercial systems based on this

model. [634] contains a good annotated collection of systems-oriented papers on database

management.

Other texts covering database management systems include [169, 208, 289, 600, 499, 656, 669].

[169] provides a detailed discussion of the relational model from a conceptual standpoint and

is notable for its extensive annotated bibliography. [499] presents a performance-oriented per-

spective, with references to several commercial systems. [208] and [600] offer broad coverage of

database system concepts, including a discussion of the hierarchical and network data models.

[289] emphasizes the connection between database query languages and logic programming.

[669] emphasizes data models. Of these texts, [656] provides the most detailed discussion of

theoretical issues. Texts devoted to theoretical aspects include [38, 436, 3]. Handbook [653]

includes a section on databases that contains introductory survey articles on a number of

topics.


